Introduction to Statistical Learning, Data Analysis and Signal Processing
4.0
creditsAverage Course Rating
Introduction to high dimensional data sets: key problems in statistical and machine learning. Geometric aspects. Principal component analysis, linear dimension reduction, random projections. Concentration phenomena: examples and basic inequalities. Metric spaces and embeddings thereof. Kernel methods. Nonlinear dimension reduction, manifold models. Regression. Vector spaces of functions, linear operators, projections. Orthonormal bases; Fourier and wavelet bases, and their use in signal processing and time series analysis. Basic approximation theory. Linear models, least squares. Bias and variance tradeoffs, regularization. Sparsity and compressed sensing. Multiscale methods. Graphs and networks. Random walks on graphs, diffusions, page rank. Block models. Spectral clustering, classification, semi-supervised learning. Algorithmic and computational aspects of the above will be consistently in focus, as will be computational experiments on synthetic and real data. Linear algebra will be used throughout the course, as will multivariable calculus and basic probability (discrete random variables). Basic experience in programming in C or MATLAB or R or Octave. 7Recommended Course Background: More than basic programming experience in Matlab or R; some more advanced probability (e.g. continuous random variables), some signal processing (e.g. Fourier transform, discrete and continuous). Co-listed with EN.550.416
No Course Evaluations found