Semester.ly

Johns Hopkins University | AS.171.430

Introduction to Quantum Field Theory

3.0

credits

Average Course Rating

(-1)

Quantum Field Theory marries the principles of special relativity with quantum mechanics and provides a remarkably consistent description of a wide variety of phenomena, ranging from the theory of elementary particles to processes in condensed matter physics. It is an essential element in the toolkit of every physicist. In this course, we provide an introduction to this vast topic and aim to provide an intuitive understanding of this field. We will start by learning how to think about quantum mechanics in a manner consistent with special relativity (the Klein Gordon and Dirac equations), learn how to estimate relativistic quantum processes (Feynman diagrams), analyze nonsensical infinities that arise in these theories (Renormalization) and conclude with an overview of the Standard Model of Particle Physics (QCD and Electroweak theory). The course is aimed at introducing the student to how physicists think about these issues and it is a stepping stone to graduate study in this topic.

No Course Evaluations found