Semester.ly

Johns Hopkins University | AS.425.636

Emerging Energy Technologies and Applications

3.0

credits

Average Course Rating

(-1)

This elective course builds on a number of ideas covered in the core Principles and Applications of Energy Technology course (425.601) - and as with the first course uses and integrates a broad range of ideas from science, engineering and economics. The main focus of the course will be to broaden and deepen the coverage of the how some of the emerging energy technologies work, that were either not covered or only lightly covered in the core course. Electricity generation or storage related topics include (1) Fuel cells and batteries, including hydrogen fuel cells, batteries with different lithium-ion chemistries, and flow batteries, including integration with solar and wind (2) ocean wave devices, with an emphasis on the energy in traveling ocean waves, and how some of this wave energy can be absorbed and converted to electricity, through ideas related to natural frequency and forced damped oscillations, (3) new approaches to carbon capture and sequestration (CCS), such as the proposed Allam cycle - which is a type of closed cycle combustion turbine (CT), where the use of super-critical carbon dioxide rather air as the working fluid facilitates CCS (4) nuclear energy, from small modular fission to fusion. The course will also look at some important applications of electricity, including light emitting diodes (LEDs). The 2014 Nobel prize for physics went to inventors of the first blue LEDs using high band-gap semi-conductors, like indium gallium nitride which has made their widespread use for high quality white light applications possible. LEDs - as will be explained - are similar to (the p-n junctions in) PV cells but with higher band gaps, and operated to run backwards using an electrical source, so that electrical power is converted to visible light with much higher efficiency than with traditional incandescent light bulbs.

No Course Evaluations found