Semester.ly

Johns Hopkins University | EN.525.745

Applied Kalman Filtering

3.0

credits

Average Course Rating

(-1)

Theory, analysis, and practical design and implementation of Kalman filters are covered, along with example applications to real-world problems. Topics include a review of random processes and linear system theory; Kalman filter derivations; divergence analysis; numerically robust forms; suboptimal filters and error budget analysis; prediction and smoothing; cascaded, decentralized, and federated filters; linearized, extended, second-order, and adaptive filters; and case studies in GPS, inertial navigation, and ballistic missile tracking.

No Course Evaluations found