Spacecrafts, Submarines, and Glaciers: Solid Mechanics in Extreme Environments
3.0
creditsAverage Course Rating
In this course, students will explore the mechanics of solids in the context of designing and operating spacecrafts and submarines, as well as understanding deformation and failure in glaciers. This course covers the fundamentals of solid mechanics, including three-dimensional stress, strain, deformation, and failure, and their application in extreme environments. Through such real-world examples, students will gain a strong foundation in the mechanics of solids and their unique applications. Students will learn about some aspects of spacecraft structural design to overcome unique challenges, including the effects of extreme temperatures, radiation, and vacuum environments on materials and structures. Students will also learn about the structural design of submarines, including behavior under high pressure as well as failure induced by implosion or crushing. The final part of the course will focus on glacier mechanics, including the behavior of ice under different loads and temperatures and the mechanics of ice sheets and icebergs. Students will learn about the use of mechanics principles in understanding glacier dynamics and the design of structures such as ice dams and ice walls. Through real-world examples, students will gain a strong foundation in the mechanics of solids and structures, as well as an understanding of the challenges and opportunities presented by designing and operating structures in extreme environments.
No Course Evaluations found