Statistical Theory I
4.0
creditsAverage Course Rating
The fundamentals of mathematical statistics will be covered. Topics include: distribution theory for statistics of normal samples, exponential statistical models, the sufficiency principle, least squares estimation, maximum likelihood estimation, uniform minimum variance unbiased estimation, hypothesis testing, the Neyman-Pearson lemma, likelihood ratio procedures, the general linear model, the Gauss-Markov theorem, simultaneous inference, decision theory, Bayes and minimax procedures, chi-square methods, goodness-of-fit tests, and nonparametric and robust methods.