Structure and Function of the Auditory and Vestibular Systems
3.0
creditsAverage Course Rating
This course will cover basic functions of the auditory and vestibular pathways responsible for perception of sound and balance. Topics include: hair cell structure and mechanotransduction, hair cell electromotility and cochlear active force production, hair cell synaptic signaling, cochlear development and role of glia in the inner ear, primary auditory and vestibular stimulus encoding, afferents and the first-order brainstem nuclei, as well as clinical consequences of peripheral damage, physiology of hearing loss, vestibular loss, tinnitus, hair cell regeneration and gene therapy. Moving more centrally, synaptic transmission and signal processing in central neurons, and complex sound perception and movement control will be discussed. Aspects such as speech perception, sound localization, vestibular reflexes, vestibular compensation, and self-motion perception are discussed with an integrated perspective covering perceptual, physiological, and mechanistic data. Grades will be based on participation in class, homework, and first-half and second-half exams (both in class, closed book, short answer/essay types). This course will meet on the School of Medicine campus. Recommended Background: general introduction to Neuroscience. Undergraduates with knowledge in Neuroscience welcome.
No Course Evaluations found