Randomized and Big Data Algorithms
3.0
creditsAverage Course Rating
The course emphasizes algorithmic design aspects, and how randomization can be a helpful tool. The topics covered include: tail inequalities, linear programming relaxation & randomized rounding, de-randomization, existence proofs, universal hashing, markov chains, metropolis and metropolis-hastings methods, mixing by coupling and by eigenvalues, counting problems, semi-definite programming and rounding, lower bound arguments, and applications of expanders. [Analysis] (www.cs.jhu.edu/~cs464) Recommended Course Background: EN.600.363 or EN.600.463.