Semester.ly

Johns Hopkins University | EN.601.783

Vision as Bayesian Inference

3.0

credits

Average Course Rating

(3.96)

This is an advanced course on computer vision from a probabilistic and machine learning perspective. It covers techniques such as linear and non-linear filtering, geometry, energy function methods, markov random fields, conditional random fields, graphical models, probabilistic grammars, and deep neural networks. These are illustrated on a set of vision problems ranging from image segmentation, semantic segmentation, depth estimation, object recognition, object parsing, scene parsing, action recognition, and text captioning. Required course background: calculus, linear algebra (AS.110.201 or equiv.), probability and statistics (AS.550.311 or equiv.), and the ability to program in Python and C++.

Spring 2023

Professor: Alan Yuille

(3.96)