Advanced Methods in Biostatistics II
4.0
creditsAverage Course Rating
Surveys basic statistical inference, estimates, tests and confidence intervals, and exploratory data analysis. Reviews probability distributions and likelihoods, independence and exchangeability, and modes of inference and inferential goals including minimizing MSE. Reviews linear algebra, develops the least squares approach to linear models through projections, and discusses connections with maximum likelihood. Covers linear, least squares regression, transforms, diagnostics, residual analysis, leverage and influence, model selection for estimation and predictive goals, departures from assumptions, efficiency and robustness, large sample theory, linear estimability, the Gauss Markov theorem, distribution theory under normality assumptions, and testing a linear hypothesis.
No Course Evaluations found