Foundations of Statistical Inference
4.0
creditsAverage Course Rating
Investigates the foundations of statistics as applied to assessing the evidence provided by an observed set of data. Topics include: law of likelihood, the likelihood principle, evidence and the likelihood paradigm for statistical inference; failure of the Neyman-Pearson and Fisherian theories to evaluate evidence; marginal, conditional, profile and other likelihoods; and applications to common problems of inference.
No Course Evaluations found