Advanced Latent Variable Modeling: Matching Model to Question
3.0
creditsAverage Course Rating
Reviews concepts, key assumptions, and published applications of advanced latent variable methods commonly used in psychology or mental health research including growth mixture models, latent class analysis with covariates and distal outcomes, and latent transition analysis. Acquaints students with the current state of science related to latent variable methods, which is a quickly advancing field, and gives students the tools they need to build an appropriate latent model for their research question. Topics include growth mixture modeling, latent class regression, latent transition analysis, multi-level models, and measurement invariance. Presents students with examples from psychological, mental health, and developmental datasets with applications in the behavioral and social sciences. Students will apply lessons from didactic lectures in assignments and class projects.
No Course Evaluations found